C N. R. BADNELL 19/02/21 C PROGRAM TC3NJ C C----------------------------------------------------------------------- C TEST C EVALUATION OF 3N-J SYMBOL OF FIRST AND SECOND KIND BY SUMMATION OF 6-J C THESE FORMS OF 3N-J COEFFICIENTS FOLLOW YUTSIS, LEVINSON & VANAGAS C EQS (17.1) AND (17.2) "MATHEMATICAL APPARATUS OF THE THEORY OF ANGULAR C MOMENTUM" ISRAEL PROGRAM FOR SCIENTIFIC TRANSLATIONS: JERUSALEM (1962) C C FOR THE FIRST KIND: C THIS FORM ILLUSTRATES THE SYMMETRIES MORE CLEARLY THAN THE WIGNER FORM C FOR N>3 - SEE ORD-SMITH PHYS.REV.94 1227 (1954). C FOR N=3 IT IS EQUIVALENT TO THE WIGNER 9-J FORM (JUST A DIFFERENT C ARRANGEMENT OF ARGUMENTS) BUT FOR N=2 IT CORRESPONDS TO THE PHASE OF C THE RACAH W-COEFFICIENT *NOT* WIGNER 6-J. C C C EXAMPLES (1ST KIND): C C N=1: YLV62 EQ 17.10a C 1 C 0 C 1 C C N=2:: TWIG6JR EG 3 (YLV ORDER) C 20 32 C 28 30 C 26 30 C C N=3: TWIG9J EG 2 (YLV ORDER) C 160 100 140 C 200 200 200 C 100 120 100 C C N=4: WEI J.PHYS.A40 229501 (2013) C 40 30 18 20 C 28 36 30 30 C 18 16 20 24 C C N=5 YU PH.D. THESIS BERKELEY (2010) (YLV ORDER) C 148 150 148 187 180 C 2 2 197 205 160 C 194 192 190 173 176 C C----------------------------------------------------------------------- C IMPLICIT REAL*8 (A-H,O-Z) C PARAMETER (IWRITE=0) !=0 TO SCREEN, >0 TO C3NJ.out C ALLOCATABLE :: A(:),B(:),C(:) C C IF(IWRITE.GT.0)OPEN(IWRITE,FILE='C3NJ.out') !STATUS='UNKNOWN' C C ASK USER TO ENTER N AND ALL 3*N PREDEFINED ARGUMENTS (ROWWISE) C WRITE(*,*)"DETERMINES YLV 3N-J SYMBOL (1ST & 2ND KIND) FOR GIVEN " X ,"3*N ARGUMENTS (rowwise)" C 1 WRITE(IWRITE,*) WRITE(*,*)"ENTER N (.eq.0 exits)" C READ(*,*)N0 C N=ABS(N0) IF(N.EQ.0.OR.N0.EQ.-1)THEN WRITE(*,*)'*** EXITING AS N.eq.0,-1' IF(IWRITE.GT.0)WRITE(*,*)'*** 3N-J OUTPUT IN C3NJ.out' STOP ELSE N3=MAX(N,3) ALLOCATE (A(N3),B(N3),C(N3)) ENDIF C C WRITE SOME WARNINGS/COMMENTS C IF(N.EQ.1) XWRITE(*,*)'(N=1 DOES NOT CORRESPOND TO ANY OBVIOUS WIGNER 3-J)' IF(N.EQ.2) XWRITE(*,*)'(N=2 CORRESPONDS TO RACAH W-FUNCTION, NOT WIGNER 6-J)' IF(N.EQ.3) XWRITE(*,*)'(N=3 CORRESPONDS TO RACAH X-FUNCTION EQUIV WIGNER 9-J)' IF(N.LE.3) XWRITE(*,*)'N.B. THE 2ND KIND COEFFICIENTS ARE TRIVIAL FOR THIS N' C 2 WRITE(IWRITE,*) WRITE(*,*)"ENTER THE 3*N INTEGERS (ROWWISE) AT *TWICE* " X ,"ACTUAL VALUE (any.lt.0 exits):" IF(N0.GT.0)THEN WRITE(*,*)"(DO *NOT* USE WIGNER ORDERING!)" ELSE WRITE(*,*)"(N.B. YOU HAVE FLAGGED INPUT AS WIGNER ORDERED)" ENDIF C READ(*,*)(A(I),I=1,N),(B(I),I=1,N),(C(I),I=1,N) C DO I=1,N IF(A(I).LT.0.OR.B(I).LT.0.OR.C(I).LT.0)THEN WRITE(*,*)'*** EXITING AS ARGUMENTS ARE NOT ALL .GE. ZERO' IF(IWRITE.GT.0)WRITE(*,*)'*** 3N-J OUTPUT IN C3NJ.out' DEALLOCATE (A,B,C) GO TO 1 ENDIF A(I)=A(I)/2 B(I)=B(I)/2 C(I)=C(I)/2 ENDDO C C CONVERT FROM WIGNER ORDERED ARGUMENTS TO YLV62 (FOR N.GT.1) C NOTE PHASE FOR CASE N=2, RACAH W IS OUTPUT, AS PER YLV. C IF(N0.LT.0)THEN IF(N.EQ.2)THEN !ALIGN FOR WIG2YLV TO RE-ORDER A(3)=B(1) B(1)=B(2) B(2)=C(1) B(3)=C(2) ENDIF CALL WIG2YLV(N,A,B,C) ENDIF c ct call cpu_time(timei) C C ct do i=1,10000 CALL C3NJ(C3NJ1,C3NJ2,N,A,B,C,KMIN,KMAX,IH) ct enddo c ct call cpu_time(timef) ct times=timef-timei ct write(*,"(' recursion time=',1pe9.1,' msecs')")times*1000 C IF(KMIN.LT.0)THEN IF(KMIN.EQ.-3)THEN !SHOULD NOT HAPPEN WRITE(*,*)'*** DIMENSION FAILURE, INCREASE NDIMW TO ',KMAX ELSE WRITE(*,*)'*** SELECTION RULE FAILURE, ALL 3N-J EQUAL ZERO!' IF(KMIN.EQ.-1)WRITE(*,*)'*** non-integer triangle sum' IF(KMIN.EQ.-2)WRITE(*,*)'*** triangle rule failure' ENDIF GO TO 2 ENDIF C IF(IWRITE.GT.0) XWRITE(*,"('C3NJ1=',1P2D25.16,3X,'C3NJ2=',1P2D25.16)")C3NJ1,C3NJ2 C IF(IWRITE.GE.0)THEN WRITE(IWRITE,"(/4X,'C3NJ(A,B,C)',3X,'N=',I3,', 2A 2B 2C =')")N IF(N0.LT.0) X WRITE(IWRITE,"(25X,'OUTPUT ARGUMENTS ARE STILL YLV-ORDERED')") WRITE(IWRITE,"(32X,10I7)")(NINT(2*A(I)),I=1,N) WRITE(IWRITE,"(32X,10I7)")(NINT(2*B(I)),I=1,N) WRITE(IWRITE,"(32X,10I7)")(NINT(2*C(I)),I=1,N) WRITE(IWRITE,"(2(10X,1P2D25.16))")C3NJ1,C3NJ2 WRITE(IWRITE,*) ENDIF c if(iwrite.gt.0)call flush(IWRITE) C GO TO 2 C END PROGRAM TC3NJ C C*********************************************************************** C SUBROUTINE C3NJ(C3NJ1,C3NJ2,NMAX,A,B,C,KMIN,KMAX,IH) C C----------------------------------------------------------------------- C C N.R.BADNELL C C CALCULATES THE 3N-J SYMBOL OF THE 1ST KIND ( A(N), N=1,NMAX ) C ( B(N), N=1,NMAX ) C ( C(N), N=1,NMAX ) C C CALCULATES THE 3N-J SYMBOL OF THE 2ND KIND [ A(N), N=1,NMAX ] C [ B(N), N=1,NMAX ] C [ C(N), N=1,NMAX ] C C IN TERMS OF A SUM OF AN N-PRODUCT OF 6-J SYMBOLS USING SR.WIG6JR. C SEE YUTSIS, LEVINSON & VANAGAS (1962) EQS (17.1) AND (17.2) C USES WIGNER 6-J RECURRENCE OF BADNELL AT AL MNRAS (2021) C C INPUT: C NMAX, THE N-VALUE FOR 3N-J COEFFICIENTS TO BE EVALUATED. C A(N),B(N),C(N), N=1,NMAX: ALL 3*N ARGUMENTS OF THE 3N-J SYMBOL, AS C DEFINED ABOVE, USING THEIR ACTUAL VALUE, I.E. *NOT* TWICE (REAL*8). C *** WARNING: THESE MUST *NOT* BE IN WIGNER ORDERING!!! C MAKE A CALL TO SR.WIG2YLV BEFOREHAND, IF NECESSARY, TO CONVERT. C C OUTPUT: C C3NJ1,C3NJ2: THE REQUIRED 3N-J SYMBOL OF 1ST & 2ND KIND (REAL*8) C KMIN,KMAX,IH: THE RANGE (KMIN+IH/2,KMAX+IH/2)OF THE K-SUM OVER THE C 6-J SYMBOL N-PRODUCT (INTEGER) C C KMIN.LT.0 FLAGS AN ERROR: C -1 NON-INTEGER TRIANGLE SUM. C -2 TRIANGLE RULE FAILURE. C -3 DIMENSION ERROR, KMAX THEN CONTAINS THE REQUIRED NDIMW. C (SHOULD NOT OCCUR WITH USE OF ALLOCATABLE.) C C UPDATE LOG: C 23/12/15 - PHASE WAS NOT DETERMINED IF W6J(JMAX)=0 C 11/12/15 - REMOVED TEMP ARRAY. C 20/11/15 - INITIAL RELEASE. C C----------------------------------------------------------------------- C IMPLICIT REAL*8 (A-H,O-Z) C logical debug1 !,debug2 C PARAMETER (DZERO=0.0D0) PARAMETER (DHALF=0.5D0) PARAMETER (DONE=1.0D0) PARAMETER (DEPS1=1.D-30) !SMALLEST NON-ZERO COEFF PARAMETER (DEPS2=1.D-5) PARAMETER (D1P50=1.D50) !A BIG NUMBER C DIMENSION A(NMAX),B(NMAX),C(NMAX) C ALLOCATABLE :: W6J(:),W0(:),W1(:),W2(:) C data debug1/.true./ !,debug2/.true./ data iwritd/0/ !=0 to screen; set < 0 for non-interactive use C if(iwritd.lt.0)debug1=.false. IFAIL=0 C C INITIALIZE (LEAVE 3N-J SELECTION RULES TO WIG6JR) C C3NJ1=DZERO C3NJ2=DZERO IH=0 C C DETERMINE 6J SUMMATION RANGE K=KMIN,KMAX (QUICK EXIT IF ZERO SUM) C (SAME FOR 1ST AND 2ND KIND) C T=DZERO DO N=1,NMAX T=MAX(T,ABS(A(N)-C(N))) ENDDO KMIN=NINT(T-DEPS2) C T=D1P50 DO N=1,NMAX T=MIN(T,A(N)+C(N)) ENDDO KMAX=NINT(T-DEPS2) C IF(KMIN.GT.KMAX)THEN KMIN=-2 RETURN ENDIF C ALLOCATE (W0(KMIN:KMAX),W1(KMIN:KMAX),W2(KMIN:KMAX)) C IF(KMAX.NE.NINT(T+DEPS2))IH=1 !HALF-INTEGER C th=dhalf*ih if(debug1) x write(iwritd,"(/' 6j sum range: ',2f9.1)")kmin+th,kmax+th C C KMAX IS THE COMMON RANGE, WE NEED THE MAX RANGE OF THE N SEPARATE W6J. C (NOT WORTH N SEPARATE ALLOCATES WITH BESPOKE NDIMW.) C T=MIN(A(NMAX)+C(NMAX),A(1)+C(1)) DO N=2,NMAX T0=MIN(A(N)+C(N),A(N-1)+C(N-1)) T=MAX(T,T0) ENDDO C NDIMW=NINT(T-DEPS2) C ALLOCATE (W6J(-1:NDIMW+1)) C C COMMON TO FIRST AND SECOND KIND C W0=DONE JMIN0=-1 JMAX0=999999999 c if(debug1)write(iwritd,"(/'1st & 2nd kind')") C DO N=1,NMAX-1 C CALL WIG6JR(W6J,C(N),A(N), B(N),A(N+1),C(N+1) X ,JMIN,JMAX,IH0,NDIMW) C IF(JMIN.LT.0)THEN !NEITHER 1ST NOR 2ND KIND EXIST IFAIL=3 GO TO 500 ENDIF C JMIN0=MAX(JMIN0,JMIN) !FOR INFO ONLY JMAX0=MIN(JMAX0,JMAX) !FOR INFO ONLY c c should be caught already if(ih.ne.ih0)then write(*,*)'6j mixes integer and half integer...?',ih,ih0 stop endif C DO K=KMIN,KMAX W0(K)=W0(K)*W6J(K) c write(*,*)k,w6j(k) ENDDO C ENDDO C C COMPLETE FIRST KIND C if(debug1)write(iwritd,"(/'1st kind')") c CALL WIG6JR(W6J,C(NMAX),A(NMAX), B(NMAX),C(1),A(1) X ,JMIN,JMAX,IH1,NDIMW) C IF(JMIN.LT.0)THEN !1ST KIND DOES NOT EXIST IF(JMIN.EQ.-3)GO TO 500 IFAIL=1 W1=DZERO GO TO 20 ENDIF C JMIN1=MAX(JMIN0,JMIN) !FOR INFO ONLY JMAX1=MIN(JMAX0,JMAX) !FOR INFO ONLY c c should be caught already if(ih.ne.ih1)then write(*,*)'6j mixes integer and half integer...?',ih,ih1 stop endif C DO K=KMIN,KMAX W1(K)=W0(K)*W6J(K) c write(*,*)k,w6j(k) ENDDO C C COMPLETE SECOND KIND C 20 CONTINUE if(debug1)write(iwritd,"(/'2nd kind')") c CALL WIG6JR(W6J,C(NMAX),A(NMAX), B(NMAX),A(1),C(1) X ,JMIN,JMAX,IH2,NDIMW) C IF(JMIN.LT.0)THEN !2ND KIND DOES NOT EXIST IFAIL=IFAIL+2 IF(IFAIL.EQ.3)GO TO 500 !NOR DOES 1ST, SO EXIT W2=DZERO GO TO 30 ENDIF C JMIN2=MAX(JMIN0,JMIN) !FOR INFO ONLY JMAX2=MIN(JMAX0,JMAX) !FOR INFO ONLY c c should be caught already if(ih.ne.ih2)then write(*,*)'6j mixes integer and half integer...?',ih,ih2 stop endif C DO K=KMIN,KMAX W2(K)=W0(K)*W6J(K) c write(*,*)k,w6j(k) ENDDO C C DETERMINE PHASES (might be useful to do so earlier for quicker exit) C 30 SUMR=DZERO DO N=1,NMAX SUMR=SUMR+A(N)+B(N)+C(N) ENDDO IR=NINT(SUMR-DEPS2) IF(IR.NE.NINT(SUMR+DEPS2))THEN !HALF-INTEGER IHR=1 ELSE !INTEGER IHR=0 ENDIF IS2=IR+NMAX*KMIN IS1=IS2-KMIN IS2=MOD(IS2,2) IS2=1-2*IS2 IS1=MOD(IS1,2) IS1=1-2*IS1 if(ih.eq.0)then if(ihr.ne.0)then write(*,*)'nj sum mixes integer and half integer...?',ih,ihr stop endif else !1st & 2nd can't both exist for a given nmax IS=IHR+NMAX*IH if(2*(is/2).ne.is)then write(*,*)'nj 2-sum mixes integer and half integer...?',ih,ihr if(ifail.lt.2)stop '2nd: ifail.lt.2' is2=0 else IS2=IS2+IS/2 IS2=MOD(IS2,2) IS2=1-2*IS2 endif IS=IS-IH if(2*(is/2).ne.is)then write(*,*)'nj 1-sum mixes integer and half integer...?',ih,ihr if(ifail.eq.2)stop '1st: ifail.eq.2' is1=0 else IS1=IS1+IS/2 IS1=MOD(IS1,2) IS1=1-2*IS1 endif endif C C PERFORM SUMMATION C ISWAP=-1 IHP=IH+1 C1=DZERO C2=DZERO wmax1=0 wmax2=0 IF(MOD(NMAX,2).EQ.0)THEN DO K=KMIN,KMAX ISWAP=-ISWAP T=(2*K+IHP)*W1(K) C1=C1+ISWAP*T wmax1=max(wmax1,abs(t)) c if(debug1)write(*,*)k,t,'wmax1=',wmax1 ENDDO DO K=KMIN,KMAX T=(2*K+IHP)*W2(K) C2=C2+T wmax2=max(wmax2,abs(t)) c if(debug1)write(*,*)k,t,'wmax2=',wmax2 ENDDO ELSE DO K=KMIN,KMAX T=(2*K+IHP)*W1(K) C1=C1+T wmax1=max(wmax1,abs(t)) c if(debug1)write(*,*)k,t,'wmax1=',wmax1 ENDDO DO K=KMIN,KMAX ISWAP=-ISWAP T=(2*K+IHP)*W2(K) C2=C2+ISWAP*T wmax2=max(wmax2,abs(t)) c if(debug1)write(*,*)k,t,'wmax2=',wmax2 ENDDO ENDIF C C1=C1*IS1 !APPLY KMIN PHASE C2=C2*IS2 !APPLY KMIN PHASE C c write(*,*)'wmax=',wmax1,wmax2 IF(ABS(C1).LT.-DEPS1*wmax1)C1=DZERO !ZEROIZE IF(ABS(C2).LT.-DEPS1*wmax2)C2=DZERO !ZEROIZE C C3NJ1=C1 C3NJ2=C2 C 100 DEALLOCATE (W6J,W0,W1,W2) C RETURN C 500 KMIN=JMIN KMAX=JMAX GO TO 100 C END SUBROUTINE C3NJ C C*********************************************************************** C SUBROUTINE WIG6JR(W6J,A2,A3,B1,B2,B3,JMIN,JMAX,IH,NDIMW) C C----------------------------------------------------------------------- C C N.R.BADNELL C C CALCULATES WIGNER 6-J SYMBOL ( A1 A2 A3 ) C ( B1 B2 B3 ) C FOR ALL ALLOWED A1 GIVEN BY JMIN+IH/2,...,JMAX+IH/2, WHERE IH=0 OR 1, C VIA FORWARD AND BACKWARD RECURSION. OUTPUT IN W6J(J): J=JMIN,...,JMAX. C VALUES LESS THAN DEPS1 *WITHIN THE CLASSICAL REGION* ARE SET TO ZERO. C SEE E.G. A. R. EDMONDS "ANGULAR MOMENTUM IN QUANTUM MECHANICS" (1957). C C COMBINES THE ALGORITHMS (BUT NOT CODING) OF C SCHULTEN K. AND GORDON R. G., 1975, J.MATH.PHYS., 16, 1961 AND 1971 C AND C LUSCOMBE J. H. AND LUBAN M., 1998, PHYS.REV.E, 57, 7274 C - SEE C BADNELL N. R., GUZMAN F., BRODIE S., WILLIAMS R. J. R., VAN HOOF C P. A. M., CHATZIKOS M., & FERLAND G. J., 2021 MNRAS, 507, 2922 C C INPUT: C A2,A3,B1,B2,B3: THE FIVE ARGUMENTS OF THE 6-J SYMBOL AS DEFINED ABOVE C USING THEIR ACTUAL VALUE, I.E. *NOT* TWICE (REAL*8). C NDIMW: THE UPPER DIMENSION OF THE ARRAY W6J(-1:NDIMW+1) (INTEGER) C REQUIRED IS AT LEAST JMAX. C C OUTPUT: C JMIN,JMAX,IH: THE RANGE OF ARGUMENT OF THE 6-J SYMBOL (INTEGER) C W6J(JMIN+IH/2,JMAX+IH/2): 6-J SYMBOL FOR ALL POSSIBLE A1. (REAL*8) C C JMIN.LT.0 FLAGS AN ERROR: C -1 NON-INTEGER TRIANGLE SUM. C -2 TRIANGLE RULE FAILURE. C -3 DIMENSION ERROR, JMAX THEN CONTAINS THE REQUIRED NDIMW. C C UPDATE LOG: C 23/12/15 - PHASE WAS NOT DETERMINED IF W6J(JMAX)=0 C 11/12/15 - REMOVED TEMP ARRAY. C 20/11/15 - INITIAL RELEASE. C C----------------------------------------------------------------------- C IMPLICIT REAL*8 (A-H,O-Z) C logical debug0,debug1,debug2 C PARAMETER (DZERO=0.0D0) PARAMETER (DHALF=0.5D0) PARAMETER (DONE=1.0D0) PARAMETER (DEPS1=1.D-16) !REAL*8 ZERO PARAMETER (DEPS2=1.D-5) C PARAMETER (NDIMM=5) !MAX NO. MATCHING POINTS C DIMENSION W6J(-1:NDIMW+1),W1(NDIMM),W2(NDIMM) C data debug0/.false./,debug1/.true./,debug2/.true./ data iwritd/0/ !=0 to screen; set < 0 for non-interactive use C E(A1)=SQRT( X (A1*A1-(A2-A3)*(A2-A3))*((A2+A3+1)*(A2+A3+1)-A1*A1)* X (A1*A1-(B2-B3)*(B2-B3))*((B2+B3+1)*(B2+B3+1)-A1*A1) X ) c X (A1-A2+A3)*(A1+A2-A3)*(A2+A3+1-A1)*(A2+A3+1+A1)* c X (A1-B2+B3)*(A1+B2-B3)*(B2+B3+1-A1)*(B2+B3+1+A1) c X ) C F(A1)=(A1+A1+1)*( X A1*(A1+1)*(-A1*(A1+1)+A2*(A2+1)+A3*(A3+1)-2*B1*(B1+1))+ X B2*(B2+1)*(A1*(A1+1)+A2*(A2+1)-A3*(A3+1))+B3*(B3+1)* X (A1*(A1+1)-A2*(A2+1)+A3*(A3+1)) X ) c X A1*(A1+1)*(-A1*(A1+1)+A2*(A2+1)+A3*(A3+1)+ c X B2*(B2+1)+B3*(B3+1)-2*B1*(B1+1))+ c X (A2*(A2+1)-A3*(A3+1))*(B2*(B2+1)-B3*(B3+1)) c X ) C X(A1)=A1*E(A1+1) Z(A1)=(A1+1)*E(A1) Y(A1)=F(A1) C if(iwritd.lt.0)debug1=.false. C C CHECK 6J-SELECTION RULES (JMIN FLAGS FAILURE TYPE) C W6J=0 !INITIALZE ALL IH=0 JMAX=-1 C IF( X NINT(A2+B1+B3-DEPS2).NE.NINT(A2+B1+B3+DEPS2) X .OR. X NINT(A3+B1+B2-DEPS2).NE.NINT(A3+B1+B2+DEPS2) X )THEN if(debug2)write(*,*)'*** sr.wig6jr: non-integer triangle sum...' JMIN=-1 RETURN ENDIF IF( X B3.GT.A2+B1+DEPS2.OR.B3.LT.ABS(A2-B1)-DEPS2 X .OR. X B2.GT.A3+B1+DEPS2.OR.B2.LT.ABS(A3-B1)-DEPS2 X )THEN if(debug2)write(*,*)'*** sr.wig6jr: triangle rule failure...' JMIN=-2 RETURN ENDIF C C QUANTUM LIMITS C J23M=NINT(ABS(A2-A3)-DEPS2) L23M=NINT(ABS(B2-B3)-DEPS2) JMIN=MAX(J23M,L23M) J23P=NINT(A2+A3-DEPS2) L23P=NINT(B2+B3-DEPS2) JMAX=MIN(J23P,L23P) IF(J23P.NE.NINT(A2+A3+DEPS2))THEN TH=DHALF ELSE TH=0 ENDIF IH=NINT(2*TH) if(debug1) x write(iwritd,"(/' quantum range: ',2f9.1)")jmin+th,jmax+th C C DIMENSION CHECK (IN CASE USER HAS CALLED WITH HARD-WIRED DIMENSION) C IF(JMAX.GT.NDIMW)THEN JMIN=-3 if(debug2)write(*,*)'*** SR.WIG6JR: INCREASE NDIMW TO ',jmax RETURN ENDIF C C QUICK RETURN C IF(JMIN.EQ.JMAX)THEN !GET FROM NORM W6J(JMIN)=1 JMID1=JMIN JMD1M=JMID1-1 JMID2=JMID1 JMD2P=JMID2+1 GO TO 800 ENDIF C C DETERMINE NUMBER OF NODES (WOULD COUNT TO DETERMINE APPROACH TO C CLASSICALLY FORBIDDEN REGION IF WE DID NOT HAVE THIS LIMIT.) C C T=MIN(A2+B3,A3+B2) C NODES=NINT(T-B1) C C CLASSICAL LIMITS (TETRAHEDRON V=0) C C2=A2+DHALF C2=C2*C2 C3=A3+DHALF C3=C3*C3 D1=B1+DHALF D1=D1*D1 D2=B2+DHALF D2=D2*D2 D3=B3+DHALF D3=D3*D3 A=-D1 B=D1*(D2+C3-D1)+C2*(D1+D2-C3)+D3*(D1-D2+C3) C=D3*C2*(C3+D2-D1)+D2*C3*(C2+D3-D1)- X D3*C3*(C3+D3-D1)-D2*C2*(C2+D2-D1) B=B/(A+A) C=C/A D=SQRT(B*B-C) C1MIN=MAX(DZERO,-B-D) C1MIN=SQRT(C1MIN)-DHALF C1MAX=MAX(DZERO,-B+D) C1MAX=SQRT(C1MAX)-DHALF if(debug1) x write(iwritd,"(' classical range:',2f9.1)")c1min,c1max C C MATCHINGS C JMID1=INT(C1MIN+DEPS2) !INT fallback -> JMID1=0 when JMIN=0 JMID1=MAX(JMID1,JMIN) JMID1=MIN(JMID1,JMAX-1) JMD1M=JMID1-1 JMID2=NINT(C1MAX+DEPS2) JMID2=MIN(JMID2,JMAX) JMID2=MAX(JMID2,JMIN+1) JMD2P=JMID2+1 c if(debug2.and.jmid1.gt.jmid2)then !shouldn't happen write(mw6,*)'*** sr.wig6jr: jmid1,2=',jmid1,jmid2,jmin,jmax stop '*** sr.wig6jr: jmid1 .gt. jmid2' endif C JMID=(JMID1+JMID2)/2 ct jmid=jmid2-1 !approx schulten & gordon matching JMID=MAX(JMID,JMIN) JMID=MIN(JMID,JMAX) NMATCH=1 C .GT.2 COVERED BY ABOVE IF(JMID.GT.JMIN.AND.JMID.LT.JMAX X .AND.JMAX-JMIN+1.GT.2 X )NMATCH=3 C BUT NEED IF NMATCH.GT.3 NMID=NMATCH/2-1 JMID0=JMID-NMID-2 IF(NMATCH.GT.NDIMM)THEN !ONLY IF USER INCREASES 3 JMIN=-4 JMAX=NMATCH if(debug2)write(*,*)'*** SR.WIG6JR: INCREASE NDIMM TO ',nmatch RETURN ENDIF C C BEGIN MAIN RECURSIONS C C FORWARD IF(JMIN+IH.EQ.0)THEN !CASE X(0)=0=Y(0) if(jmid1.ne.jmin)stop '*** sr.wig6jr: jmin=0, jmid1>0...' JMID1=1 JMD1M=JMID1-1 C E1=4*SQRT(A2*(A2+1)*B2*(B2+1)) !E1=X(J)/J AT J=0 F00=2*(A2*(A2+1)+B2*(B2+1)-B1*(B1+1)) !F00=Y(J)/J AT J=0 C W6J(JMIN)=1 W6J(JMIN+1)=-W6J(JMIN)*F00/E1 !3-TERM all the way go to 100 C c2 W6J(JMIN)=-E1/F00 !2-TERM one step c c or could go backward all the way to zero, since c1min=0 here cb write(0,*)'going backwards' cb jmid=jmin cb nmatch=1 cb nmid=-1 cb jmid0=jmin-1 cb w1(1)=1 cb go to 200 ELSEIF(JMID1.GT.JMIN)THEN T=TH+JMIN W6J(JMIN)=-X(T)/Y(T) ENDIF C C 2-TERM C W6J(JMIN-1)=0 !NOT USED CURRENTLY DO J=JMIN+1,JMD1M T=TH+J W6J(J)=-X(T)/(Y(T)+Z(T)*W6J(J-1)) ENDDO C W6J(JMID1)=1 DO J=JMD1M,JMIN,-1 W6J(J)=W6J(J+1)*W6J(J) ENDDO C C 3-TERM 100 continue DO J=JMID1,JMID+NMID T=TH+J W6J(J+1)=-(Y(T)*W6J(J)+Z(T)*W6J(J-1))/X(T) ENDDO C J=JMID0 DO N=1,NMATCH J=J+1 W1(N)=W6J(J) ENDDO C C BACKWARD C C 2-TERM cb 200 continue W6J(JMAX+1)=0 DO J=JMAX,JMD2P,-1 T=TH+J W6J(J)=-Z(T)/(Y(T)+X(T)*W6J(J+1)) ENDDO C jsign=1 W6J(JMID2)=1 DO J=JMD2P,JMAX jsign=jsign*nint(sign(done,w6j(j)))!case w6j(jmax)=0 (underflow) W6J(J)=W6J(J-1)*W6J(J) ENDDO C C 3-TERM DO J=JMID2,JMID-NMID,-1 T=TH+J W6J(J-1)=-(Y(T)*W6J(J)+X(T)*W6J(J+1))/Z(T) ENDDO C J=JMID0 DO N=1,NMATCH J=J+1 W2(N)=W6J(J) ENDDO C C RELATIVE NORM C T12=0 T11=0 DO N=1,NMATCH T12=T12+W1(N)*W2(N) T11=T11+W1(N)*W1(N) ENDDO WMATCH=T12/T11 if(debug0) x write(iwritd,"(' jmatch=',i6,' wmatch=',f7.1)")jmid,wmatch DO J=JMIN,JMID0 W6J(J)=W6J(J)*WMATCH ENDDO C C PHASE C 800 ISIGN=NINT(A2+A3+B2+B3) ISIGN=MOD(ISIGN,2) ISIGN=-2*ISIGN+1 C T=ISIGN*W6J(JMAX) IF(T.GT.DZERO)THEN ISIGN=1 ELSEIF(T.LT.DZERO)THEN ISIGN=-1 ELSE cp if(debug2)write(*,*)'*** sr.wig6jr: unable to determine phase' cp jmin=-5 cp return isign=isign*jsign ENDIF C C ABSOLUTE NORM C IHP=IH+1 SUM=0 DO J=JMIN,JMAX SUM=SUM+(J+J+IHP)*W6J(J)*W6J(J) ENDDO SUM=SUM*(B1+B1+1) C SUM=DONE/SQRT(SUM) SUM=SUM*ISIGN if(debug0) x write(iwritd,"(' wnorm=',1pe10.2)")sum c c some test code c so=sign(done,w6j(jmin)) c nod=0 c wmax=0 c do j=jmin,jmax c if(so*w6j(j).lt.dzero)then c so=-so c nod=nod+1 c endif c wmax=max(wmax,abs(w6j(j))) c enddo c if(nod.ne.nodes)write(*,*)'nodes expected/found=',nodes,nod c write(*,*)'wmax=',wmax !order unity C DO J=JMIN,JMD1M W6J(J)=W6J(J)*SUM ENDDO DO J=JMID1,JMID2 T=W6J(J)*SUM IF(ABS(T).LT.DEPS1)T=DZERO !*wmax ZEROIZE W6J(J)=T ENDDO DO J=JMD2P,JMAX W6J(J)=W6J(J)*SUM ENDDO C RETURN C END SUBROUTINE WIG6JR C C*********************************************************************** C SUBROUTINE WIG2YLV(NMAX,A,B,C) C C RE-MAPS WIGNER-ORDERED 3N-J ARGUMENTS TO YUTSIS ET AL ORDERED. C SEE E.G. A. R. EDMONDS "ANGULAR MOMENTUM IN QUANTUM MECHANICS" (1957), C ORD-SMITH PHYS.REV.94 1227 (1954) AND YUTSIS, LEVINSON & VANAGAS C "MATHEMATICAL APPARATUS OF THE THEORY OF ANGULAR C MOMENTUM" ISRAEL PROGRAM FOR SCIENTIFIC TRANSLATIONS: JERUSALEM (1962) C C INPUT A(N), B(N), C(N) THE WIGNER 3N-J ARGUMENTS FOR N=1,...NMAX. C C OUTPUT: A(N), B(N), C(N) ARE OVERWRITTEN BY THE YLV62 ORDERING, C FOR NMAX.GT.2. C C FOR NMAX=2, C(1) & C(2) ARE UNDEFINED ON INPUT AND A(3) & B(3) ARE C UNDEFINED ON OUTPUT. C(3) IS NEVER REFERENCED THEN. C BEAR IN MIND WHEN USING THAT THE YLV62 PHASE IS THAT OF C THE RACAH W-COEFFICIENT, NOT WIGNER 6-J. C IMPLICIT REAL*8 (A-H,O-Z) C DIMENSION A(*),B(*),C(*) !* FOR CASE OF NMAX=2 C ALLOCATABLE :: D(:),E(:),F(:) !TEMP HOLD OF YLV ARGUMENTS C C QUICK RETURN C IF(NMAX.LE.1)THEN WRITE(*,*)'*** NO REMAPPING OF 3N-J ARGUMENTS EXIST FOR N.LE.1' RETURN ENDIF C C HANDLE TRIVIAL CASE C IF(NMAX.EQ.2)THEN C(1)=B(1) C(2)=B(2) B(1)=A(3) B(2)=B(3) RETURN ENDIF C ALLOCATE (D(NMAX),E(NMAX),F(NMAX)) C I=0 DO N=NMAX,4,-1 I=I+1 D(I)=A(N) E(I)=C(N-1) F(I)=B(N) ENDDO C I=I+1 D(I)=A(3) E(I)=A(1) F(I)=C(1) I=I+1 D(I)=A(2) E(I)=B(2) F(I)=B(1) I=I+1 D(I)=C(2) E(I)=C(NMAX) F(I)=B(3) C DO N=1,NMAX A(N)=D(N) B(N)=E(N) C(N)=F(N) ENDDO C DEALLOCATE (D,E,F) C RETURN C END SUBROUTINE WIG2YLV C C***********************************************************************