C N. R. BADNELL 19/02/21 C PROGRAM TWIG9J C C----------------------------------------------------------------------- C TEST C EVALUATION OF WIGNER 9-J SYMBOL BY SUMMATION OF 6-J 3-PRODUCT (WIG6JR) C C EXAMPLES: C C JOHANSSON & FORSSEN (SIAM J.SCI.COMPUT. 38, A376 (2016)) C 17 19 14 25 16 17 16 21 19 C 200 160 100 100 200 140 120 100 200 C 400 400 400 400 400 400 400 400 400 C C----------------------------------------------------------------------- C IMPLICIT REAL*8 (A-H,O-Z) C PARAMETER (IWRITE=0) !=0 TO SCREEN, >0 TO WIG9J.out C C IF(IWRITE.GT.0)OPEN(IWRITE,FILE='WIG9J.out') !STATUS='UNKNOWN' C C ASK USER TO ENTER ALL *NINE* PREDEFINED ARGUMENTS a-i (rowwise) C WRITE(*,*) X"DETERMINES WIGNER 9-J SYMBOL W9J FOR GIVEN a-i (rowwise)" WRITE(*,*) C 1 WRITE(*,*)"ENTER THE 9 INTEGERS (a-i) AT *TWICE* " X ,"ACTUAL VALUE (any.lt.0 exits):" C READ(*,*)IA,IB,IC,ID,IE,IF,IG,IH,II C IF( X IA.LT.0.OR.IB.LT.0.OR.IC.LT.0 .OR. X ID.LT.0.OR.IE.LT.0.OR.IF.LT.0 .OR. X IG.LT.0.OR.IH.LT.0.OR.II.LT.0 X )THEN WRITE(*,*)'*** EXITING AS ARGUMENTS ARE NOT ALL .GE. ZERO' IF(IWRITE.GT.0)WRITE(*,*)'*** W9J OUTPUT IN WIG9J.out' STOP ENDIF c ct call cpu_time(timei) C A1=IA A1=A1/2 A2=IB A2=A2/2 A3=IC A3=A3/2 B1=ID B1=B1/2 B2=IE B2=B2/2 B3=IF B3=B3/2 C1=IG C1=C1/2 C2=IH C2=C2/2 C3=II C3=C3/2 C ct do i=1,10000 CALL WIG9J(W9J,A1,A2,A3,B1,B2,B3,C1,C2,C3,KMIN,KMAX,IH0) ct enddo c ct call cpu_time(timef) ct times=timef-timei ct write(*,"(' recursion time=',1pe9.1,' msecs')")times*1000 C IF(KMIN.LT.0)THEN IF(KMIN.EQ.-3)THEN !SHOULD NOT HAPPEN WRITE(*,*)'*** DIMENSION FAILURE, INCREASE NDIMW TO ',KMAX ELSE WRITE(*,*)'*** SELECTION RULE FAILURE, ALL 9-J EQUAL ZERO!' IF(KMIN.EQ.-1)WRITE(*,*)'*** non-integer triangle sum' IF(KMIN.EQ.-2)WRITE(*,*)'*** triangle rule failure' ENDIF GO TO 1 ENDIF C IF(IWRITE.GT.0)WRITE(*,"('W9J=',1P2D25.16)")W9J C IF(IWRITE.GE.0) X WRITE(IWRITE,"(/4X,'W9J(A,B,C; D,E,F;G,H,I)',4X X ,'2A 2B 2C; 2D 2E 2F; 2G 2H 2I =',3(3I6,1X))") X IA,IB,IC,ID,IE,IF,IG,IH,II C IF(IWRITE.GE.0)WRITE(IWRITE,"(6X,1P2D25.16)")W9J IF(IWRITE.GE.0)WRITE(IWRITE,*) c if(iwrite.gt.0)call flush(IWRITE) C GO TO 1 C END PROGRAM TWIG9J C C*********************************************************************** C SUBROUTINE WIG9J(W9J,A1,A2,A3,B1,B2,B3,C1,C2,C3,KMIN,KMAX,IH) C C----------------------------------------------------------------------- C C N.R.BADNELL C C CALCULATES WIGNER 9-J SYMBOL ( A1 A2 A3 ) C ( B1 B2 B3 ) C ( C1 C2 C3 ) C IN TERMS OF A SUM OF A TRIPLE PRODUCT OF 6-J SYMBOLS USING SR.WIG6JR. C SEE E.G. A. R. EDMONDS "ANGULAR MOMENTUM IN QUANTUM MECHANICS" (1957). C USES WIGNER 6-J RECURRENCE OF C BADNELL N. R., GUZMAN F., BRODIE S., WILLIAMS R. J. R., VAN HOOF C P. A. M., CHATZIKOS M., & FERLAND G. J., 2021 MNRAS, 507, 2922 C C INPUT: C A1,A2,A3,B1,B2,B3,C1,C2,C3: ALL NINE ARGUMENTS OF THE 9-J SYMBOL, AS C DEFINED ABOVE, USING THEIR ACTUAL VALUE, I.E. *NOT* TWICE (REAL*8). C C OUTPUT: C W9J: THE REQUIRED 9-J SYMBOL (REAL*8) C KMIN,KMAX,IH: THE RANGE (KMIN+IH/2,KMAX+IH/2)OF THE K-SUM OVER THE C 6-J SYMBOL TRIPLE PRODUCT (INTEGER) C C KMIN.LT.0 FLAGS AN ERROR: C -1 NON-INTEGER TRIANGLE SUM. C -2 TRIANGLE RULE FAILURE. C -3 DIMENSION ERROR, KMAX THEN CONTAINS THE REQUIRED NDIMW. C (SHOULD NOT OCCUR WITH USE OF ALLOCATABLE.) C C UPDATE LOG: C 23/12/15 - PHASE WAS NOT DETERMINED IF W6J(JMAX)=0 C 11/12/15 - REMOVED TEMP ARRAY. C 20/11/15 - INITIAL RELEASE. C C----------------------------------------------------------------------- C IMPLICIT REAL*8 (A-H,O-Z) C logical debug1 !,debug2 C PARAMETER (DZERO=0.0D0) PARAMETER (DHALF=0.5D0) PARAMETER (DEPS1=1.D-16) !REAL*8 ZERO PARAMETER (DEPS2=1.D-5) C ALLOCATABLE :: W6J(:,:) C data debug1/.true./ !,debug2/.true./ data iwritd/0/ !=0 to screen; set < 0 for non-interactive use C if(iwritd.lt.0)debug1=.false. C C INITIALIZE (LEAVE 9J-SELECTION RULES TO WIG6JR) C W9J=DZERO IH=0 C C DETERMINE 6J SUMMATION RANGE K=KMIN,KMAX (QUICK EXIT IF ZERO SUM) C A1C3=A1+C3 B3A2=B3+A2 C2B1=C2+B1 C T=MAX(ABS(C2-B1),ABS(B3-A2),ABS(A1-C3)) KMIN=NINT(T-DEPS2) T=MIN(C2B1,B3A2,A1C3) KMAX=NINT(T-DEPS2) IF(KMIN.GT.KMAX)RETURN C IF(KMAX.NE.NINT(T+DEPS2))IH=1 !HALF-INTEGER C th=dhalf*ih if(debug1) x write(iwritd,"(/' 6j sum range: ',2f9.1)")kmin+th,kmax+th C C KMAX IS THE COMMON RANGE, WE NEED THE MAX RANGE OF THE 3 SEPARATE W6J. C (NOT WORTH 3 SEPARATE ALLOCATES WITH BESPOKE NDIMW.) C T1=MIN(A1C3,B3A2) T2=MIN(B3A2,C2B1) T3=MIN(C2B1,A1C3) T=MAX(T1,T2,T3) NDIMW=NINT(T-DEPS2) C ALLOCATE (W6J(-1:NDIMW+1,3)) C CALL WIG6JR(W6J(-1,1),A1,C3, A3,B3,A2,JMIN,JMAX,IH1,NDIMW) IF(JMIN.LT.0)GO TO 500 C CALL WIG6JR(W6J(-1,2),B3,A2, B2,C2,B1,JMIN,JMAX,IH2,NDIMW) IF(JMIN.LT.0)GO TO 500 C CALL WIG6JR(W6J(-1,3),C2,B1, C1,A1,C3,JMIN,JMAX,IH3,NDIMW) IF(JMIN.LT.0)GO TO 500 c c should be caught already if(ih.ne.ih1.or.ih1.ne.ih2.or.ih2.ne.ih3)then write(*,*)'6j mixes integer and half integer...?',ih,ih1,ih2,ih3 stop endif C C PERFORM SUMMATION (RELATIVELY TIME CONSUMING) C IHP=IH+1 DO K=KMIN,KMAX W9J=W9J+(2*K+IHP)*W6J(K,1)*W6J(K,2)*W6J(K,3) ENDDO W9J=W9J*(1-2*IH) !CASE HALF INTEGER (IH=1) C IF(ABS(W9J).LT.-DEPS1)W9J=DZERO !ZEROIZE C 100 DEALLOCATE (W6J) C RETURN C 500 KMIN=JMIN KMAX=JMAX GO TO 100 C END SUBROUTINE WIG9J C C*********************************************************************** C SUBROUTINE WIG6JR(W6J,A2,A3,B1,B2,B3,JMIN,JMAX,IH,NDIMW) C C----------------------------------------------------------------------- C C N.R.BADNELL C C CALCULATES WIGNER 6-J SYMBOL ( A1 A2 A3 ) C ( B1 B2 B3 ) C FOR ALL ALLOWED A1 GIVEN BY JMIN+IH/2,...,JMAX+IH/2, WHERE IH=0 OR 1, C VIA FORWARD AND BACKWARD RECURSION. OUTPUT IN W6J(J): J=JMIN,...,JMAX. C VALUES LESS THAN DEPS1 *WITHIN THE CLASSICAL REGION* ARE SET TO ZERO. C SEE E.G. A. R. EDMONDS "ANGULAR MOMENTUM IN QUANTUM MECHANICS" (1957). C C COMBINES THE ALGORITHMS (BUT NOT CODING) OF C SCHULTEN K. AND GORDON R. G., 1975, J.MATH.PHYS., 16, 1961 AND 1971 C AND C LUSCOMBE J. H. AND LUBAN M., 1998, PHYS.REV.E, 57, 7274 C - SEE C BADNELL N. R., GUZMAN F., BRODIE S., WILLIAMS R. J. R., VAN HOOF C P. A. M., CHATZIKOS M., & FERLAND G. J., 2021 MNRAS, 507, 2922 C C INPUT: C A2,A3,B1,B2,B3: THE FIVE ARGUMENTS OF THE 6-J SYMBOL AS DEFINED ABOVE C USING THEIR ACTUAL VALUE, I.E. *NOT* TWICE (REAL*8). C NDIMW: THE UPPER DIMENSION OF THE ARRAY W6J(-1:NDIMW+1) (INTEGER) C REQUIRED IS AT LEAST JMAX. C C OUTPUT: C JMIN,JMAX,IH: THE RANGE OF ARGUMENT OF THE 6-J SYMBOL (INTEGER) C W6J(JMIN+IH/2,JMAX+IH/2): 6-J SYMBOL FOR ALL POSSIBLE A1. (REAL*8) C C JMIN.LT.0 FLAGS AN ERROR: C -1 NON-INTEGER TRIANGLE SUM. C -2 TRIANGLE RULE FAILURE. C -3 DIMENSION ERROR, JMAX THEN CONTAINS THE REQUIRED NDIMW. C C UPDATE LOG: C 23/12/15 - PHASE WAS NOT DETERMINED IF W6J(JMAX)=0 C 11/12/15 - REMOVED TEMP ARRAY. C 20/11/15 - INITIAL RELEASE. C C----------------------------------------------------------------------- C IMPLICIT REAL*8 (A-H,O-Z) C logical debug0,debug1,debug2 C PARAMETER (DZERO=0.0D0) PARAMETER (DHALF=0.5D0) PARAMETER (DONE=1.0D0) PARAMETER (DEPS1=1.D-16) !REAL*8 ZERO PARAMETER (DEPS2=1.D-5) C PARAMETER (NDIMM=5) !MAX NO. MATCHING POINTS C DIMENSION W6J(-1:NDIMW+1),W1(NDIMM),W2(NDIMM) C data debug0/.false./,debug1/.true./,debug2/.true./ data iwritd/0/ !=0 to screen; set < 0 for non-interactive use C E(A1)=SQRT( X (A1*A1-(A2-A3)*(A2-A3))*((A2+A3+1)*(A2+A3+1)-A1*A1)* X (A1*A1-(B2-B3)*(B2-B3))*((B2+B3+1)*(B2+B3+1)-A1*A1) X ) c X (A1-A2+A3)*(A1+A2-A3)*(A2+A3+1-A1)*(A2+A3+1+A1)* c X (A1-B2+B3)*(A1+B2-B3)*(B2+B3+1-A1)*(B2+B3+1+A1) c X ) C F(A1)=(A1+A1+1)*( X A1*(A1+1)*(-A1*(A1+1)+A2*(A2+1)+A3*(A3+1)-2*B1*(B1+1))+ X B2*(B2+1)*(A1*(A1+1)+A2*(A2+1)-A3*(A3+1))+B3*(B3+1)* X (A1*(A1+1)-A2*(A2+1)+A3*(A3+1)) X ) c X A1*(A1+1)*(-A1*(A1+1)+A2*(A2+1)+A3*(A3+1)+ c X B2*(B2+1)+B3*(B3+1)-2*B1*(B1+1))+ c X (A2*(A2+1)-A3*(A3+1))*(B2*(B2+1)-B3*(B3+1)) c X ) C X(A1)=A1*E(A1+1) Z(A1)=(A1+1)*E(A1) Y(A1)=F(A1) C if(iwritd.lt.0)debug1=.false. C C CHECK 6J-SELECTION RULES (JMIN FLAGS FAILURE TYPE) C W6J=0 !INITIALZE ALL IH=0 JMAX=-1 C IF( X NINT(A2+B1+B3-DEPS2).NE.NINT(A2+B1+B3+DEPS2) X .OR. X NINT(A3+B1+B2-DEPS2).NE.NINT(A3+B1+B2+DEPS2) X )THEN if(debug2)write(*,*)'*** sr.wig6jr: non-integer triangle sum...' JMIN=-1 RETURN ENDIF IF( X B3.GT.A2+B1+DEPS2.OR.B3.LT.ABS(A2-B1)-DEPS2 X .OR. X B2.GT.A3+B1+DEPS2.OR.B2.LT.ABS(A3-B1)-DEPS2 X )THEN if(debug2)write(*,*)'*** sr.wig6jr: triangle rule failure...' JMIN=-2 RETURN ENDIF C C QUANTUM LIMITS C J23M=NINT(ABS(A2-A3)-DEPS2) L23M=NINT(ABS(B2-B3)-DEPS2) JMIN=MAX(J23M,L23M) J23P=NINT(A2+A3-DEPS2) L23P=NINT(B2+B3-DEPS2) JMAX=MIN(J23P,L23P) IF(J23P.NE.NINT(A2+A3+DEPS2))THEN TH=DHALF ELSE TH=0 ENDIF IH=NINT(2*TH) if(debug1) x write(iwritd,"(/' quantum range: ',2f9.1)")jmin+th,jmax+th C C DIMENSION CHECK (IN CASE USER HAS CALLED WITH HARD-WIRED DIMENSION) C IF(JMAX.GT.NDIMW)THEN JMIN=-3 if(debug2)write(*,*)'*** SR.WIG6JR: INCREASE NDIMW TO ',jmax RETURN ENDIF C C QUICK RETURN C IF(JMIN.EQ.JMAX)THEN !GET FROM NORM W6J(JMIN)=1 JMID1=JMIN JMD1M=JMID1-1 JMID2=JMID1 JMD2P=JMID2+1 GO TO 800 ENDIF C C DETERMINE NUMBER OF NODES (WOULD COUNT TO DETERMINE APPROACH TO C CLASSICALLY FORBIDDEN REGION IF WE DID NOT HAVE THIS LIMIT.) C C T=MIN(A2+B3,A3+B2) C NODES=NINT(T-B1) C C CLASSICAL LIMITS (TETRAHEDRON V=0) C C2=A2+DHALF C2=C2*C2 C3=A3+DHALF C3=C3*C3 D1=B1+DHALF D1=D1*D1 D2=B2+DHALF D2=D2*D2 D3=B3+DHALF D3=D3*D3 A=-D1 B=D1*(D2+C3-D1)+C2*(D1+D2-C3)+D3*(D1-D2+C3) C=D3*C2*(C3+D2-D1)+D2*C3*(C2+D3-D1)- X D3*C3*(C3+D3-D1)-D2*C2*(C2+D2-D1) B=B/(A+A) C=C/A D=SQRT(B*B-C) C1MIN=MAX(DZERO,-B-D) C1MIN=SQRT(C1MIN)-DHALF C1MAX=MAX(DZERO,-B+D) C1MAX=SQRT(C1MAX)-DHALF if(debug1) x write(iwritd,"(' classical range:',2f9.1)")c1min,c1max C C MATCHINGS C JMID1=INT(C1MIN+DEPS2) !INT fallback -> JMID1=0 when JMIN=0 JMID1=MAX(JMID1,JMIN) JMID1=MIN(JMID1,JMAX-1) JMD1M=JMID1-1 JMID2=NINT(C1MAX+DEPS2) JMID2=MIN(JMID2,JMAX) JMID2=MAX(JMID2,JMIN+1) JMD2P=JMID2+1 c if(debug2.and.jmid1.gt.jmid2)then !shouldn't happen write(mw6,*)'*** sr.wig6jr: jmid1,2=',jmid1,jmid2,jmin,jmax stop '*** sr.wig6jr: jmid1 .gt. jmid2' endif C JMID=(JMID1+JMID2)/2 ct jmid=jmid2-1 !approx schulten & gordon matching JMID=MAX(JMID,JMIN) JMID=MIN(JMID,JMAX) NMATCH=1 C .GT.2 COVERED BY ABOVE IF(JMID.GT.JMIN.AND.JMID.LT.JMAX X .AND.JMAX-JMIN+1.GT.2 X )NMATCH=3 C BUT NEED IF NMATCH.GT.3 NMID=NMATCH/2-1 JMID0=JMID-NMID-2 IF(NMATCH.GT.NDIMM)THEN !ONLY IF USER INCREASES 3 JMIN=-4 JMAX=NMATCH if(debug2)write(*,*)'*** SR.WIG6JR: INCREASE NDIMM TO ',nmatch RETURN ENDIF C C BEGIN MAIN RECURSIONS C C FORWARD IF(JMIN+IH.EQ.0)THEN !CASE X(0)=0=Y(0) if(jmid1.ne.jmin)stop '*** sr.wig6jr: jmin=0, jmid1>0...' JMID1=1 JMD1M=JMID1-1 C E1=4*SQRT(A2*(A2+1)*B2*(B2+1)) !E1=X(J)/J AT J=0 F00=2*(A2*(A2+1)+B2*(B2+1)-B1*(B1+1)) !F00=Y(J)/J AT J=0 C W6J(JMIN)=1 W6J(JMIN+1)=-W6J(JMIN)*F00/E1 !3-TERM all the way go to 100 C c2 W6J(JMIN)=-E1/F00 !2-TERM one step c c or could go backward all the way to zero, since c1min=0 here cb write(0,*)'going backwards' cb jmid=jmin cb nmatch=1 cb nmid=-1 cb jmid0=jmin-1 cb w1(1)=1 cb go to 200 ELSEIF(JMID1.GT.JMIN)THEN T=TH+JMIN W6J(JMIN)=-X(T)/Y(T) ENDIF C C 2-TERM C W6J(JMIN-1)=0 !NOT USED CURRENTLY DO J=JMIN+1,JMD1M T=TH+J W6J(J)=-X(T)/(Y(T)+Z(T)*W6J(J-1)) ENDDO C W6J(JMID1)=1 DO J=JMD1M,JMIN,-1 W6J(J)=W6J(J+1)*W6J(J) ENDDO C C 3-TERM 100 continue DO J=JMID1,JMID+NMID T=TH+J W6J(J+1)=-(Y(T)*W6J(J)+Z(T)*W6J(J-1))/X(T) ENDDO C J=JMID0 DO N=1,NMATCH J=J+1 W1(N)=W6J(J) ENDDO C C BACKWARD C C 2-TERM cb 200 continue W6J(JMAX+1)=0 DO J=JMAX,JMD2P,-1 T=TH+J W6J(J)=-Z(T)/(Y(T)+X(T)*W6J(J+1)) ENDDO C jsign=1 W6J(JMID2)=1 DO J=JMD2P,JMAX jsign=jsign*nint(sign(done,w6j(j)))!case w6j(jmax)=0 (underflow) W6J(J)=W6J(J-1)*W6J(J) ENDDO C C 3-TERM DO J=JMID2,JMID-NMID,-1 T=TH+J W6J(J-1)=-(Y(T)*W6J(J)+X(T)*W6J(J+1))/Z(T) ENDDO C J=JMID0 DO N=1,NMATCH J=J+1 W2(N)=W6J(J) ENDDO C C RELATIVE NORM C T12=0 T11=0 DO N=1,NMATCH T12=T12+W1(N)*W2(N) T11=T11+W1(N)*W1(N) ENDDO WMATCH=T12/T11 if(debug0) x write(iwritd,"(' jmatch=',i6,' wmatch=',f7.1)")jmid,wmatch DO J=JMIN,JMID0 W6J(J)=W6J(J)*WMATCH ENDDO C C PHASE C 800 ISIGN=NINT(A2+A3+B2+B3) ISIGN=MOD(ISIGN,2) ISIGN=-2*ISIGN+1 C T=ISIGN*W6J(JMAX) IF(T.GT.DZERO)THEN ISIGN=1 ELSEIF(T.LT.DZERO)THEN ISIGN=-1 ELSE cp if(debug2)write(*,*)'*** sr.wig6jr: unable to determine phase' cp jmin=-5 cp return isign=isign*jsign ENDIF C C ABSOLUTE NORM C IHP=IH+1 SUM=0 DO J=JMIN,JMAX SUM=SUM+(J+J+IHP)*W6J(J)*W6J(J) ENDDO SUM=SUM*(B1+B1+1) C SUM=DONE/SQRT(SUM) SUM=SUM*ISIGN if(debug0) x write(iwritd,"(' wnorm=',1pe10.2)")sum c c some test code c so=sign(done,w6j(jmin)) c nod=0 c wmax=0 c do j=jmin,jmax c if(so*w6j(j).lt.dzero)then c so=-so c nod=nod+1 c endif c wmax=max(wmax,abs(w6j(j))) c enddo c if(nod.ne.nodes)write(*,*)'nodes expected/found=',nodes,nod c write(*,*)'wmax=',wmax !order unity C DO J=JMIN,JMD1M W6J(J)=W6J(J)*SUM ENDDO DO J=JMID1,JMID2 T=W6J(J)*SUM IF(ABS(T).LT.DEPS1)T=DZERO !*wmax ZEROIZE W6J(J)=T ENDDO DO J=JMD2P,JMAX W6J(J)=W6J(J)*SUM ENDDO C RETURN C END SUBROUTINE WIG6JR C C***********************************************************************